The complex hierarchical topology of EEG functional connectivity

نویسندگان

  • Keith Smith
  • Javier Escudero
چکیده

BACKGROUND Understanding the complex hierarchical topology of functional brain networks is a key aspect of functional connectivity research. Such topics are obscured by the widespread use of sparse binary network models which are fundamentally different to the complete weighted networks derived from functional connectivity. NEW METHODS We introduce two techniques to probe the hierarchical complexity of topologies. Firstly, a new metric to measure hierarchical complexity; secondly, a Weighted Complex Hierarchy (WCH) model. To thoroughly evaluate our techniques, we generalise sparse binary network archetypes to weighted forms and explore the main topological features of brain networks - integration, regularity and modularity - using curves over density. RESULTS By controlling the parameters of our model, the highest complexity is found to arise between a random topology and a strict 'class-based' topology. Further, the model has equivalent complexity to EEG phase-lag networks at peak performance. COMPARISON TO EXISTING METHODS Hierarchical complexity attains greater magnitude and range of differences between different networks than the previous commonly used complexity metric and our WCH model offers a much broader range of network topology than the standard scale-free and small-world models at a full range of densities. CONCLUSIONS Our metric and model provide a rigorous characterisation of hierarchical complexity. Importantly, our framework shows a scale of complexity arising between 'all nodes are equal' topologies at one extreme and 'strict class-based' topologies at the other.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accounting for the complex hierarchical topology of EEG phase-based functional connectivity in network binarisation

Research into binary network analysis of brain function faces a methodological challenge in selecting an appropriate threshold to binarise edge weights. For EEG phase-based functional connectivity, we test the hypothesis that such binarisation should take into account the complex hierarchical structure found in functional connectivity. We explore the density range suitable for such structure an...

متن کامل

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

Brain Functional Connectivity Changes During Learning of Time Discrimination

The human brain is a complex system consist of connected nerve cells that adapts with and learn from the environment by changing its regional activities. Synchrony between these regional activities called functional network changes during the life, and with learning of new skills. Time perception and interval discrimination are among the most necessary skills for the human being to perceive mot...

متن کامل

Classification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in EEG Signal

The right and left hand Motor Imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchi...

متن کامل

Computer-Aided Tinnitus Detection based on Brain Network Analysis of EEG Functional Connectivity

Background: Tinnitus known as a central nervous system disorder is correlated with specific oscillatory activities within auditory and non-auditory brain areas. Several studies in the past few years have revealed that in the most tinnitus cases, the response pattern of neurons in auditory system is changed due to auditory deafferentation, which leads to variation and disruption of the brain net...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Neuroscience Methods

دوره 276  شماره 

صفحات  -

تاریخ انتشار 2017